WPCC-100

× DOWNLOAD

2D

SAVE TO PDF / PRINT

PUBLICATION - 2017-11-07

NOMINAL OPERATION PARAMETERS AT PURE WATER PUMPING (for the maximum rotation speed and the largest rotor)

Capacity	Qn	165	m³/h
Head	Н	20,5	m
Rotational speed	n	960*	rpm
Impeller diameter	Dz	400*	mm
Shaft power	Pn	13,5	kW
Weight	m	848	kg
Max. permissible size of solids		28	mm
Smallest flow cross-section		40	mm

*Pump construction enables decreasing the operational parameters by reducing the rotation speed and/or reducing the rotor's diameter, adapting the pump to the system without choking the pump.

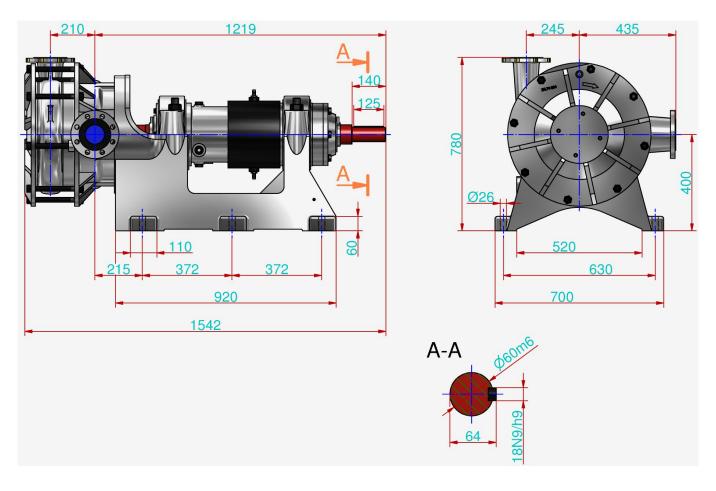
TYPICAL APPLICATIONS

- pumping mixtures of water and solids, with large grains and higly abrasive properties,
- pumping mixtures od water and quartz sand, ores, coal, slag, ash,
- mining WPCC pumps intended to replace heavy duty pumps used so far for,
- technological processes,
- industrial systems,
- filtration systems.

KEY ADVANTAGES

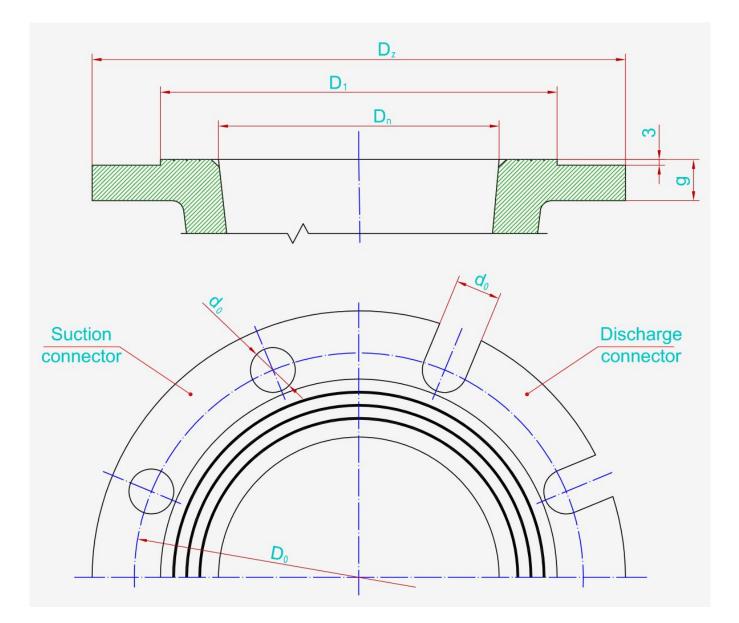
- long life ensured by the use of state-of-the-art corrosion and erosion resistant materials,
- possibility of operation with a frequency converter,
- possibility of serial operation,
- the pumped mixture density can reach ρ_{max} = 2200kg/m³ while pumping

mixtures with a 50% content of solids in water,


- silent and smooth operation
- connection dimensions in compliance with heavy duty pumps,
- inflow and suction operation,
- approved for operation in explosion-hazard zones ATEX Ex I M2.

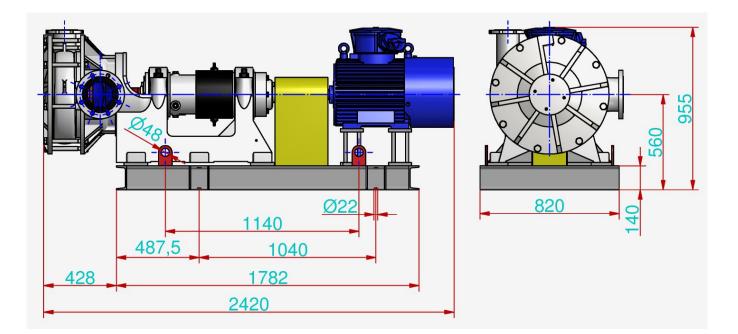
H[m] n=1450 obr/min $\begin{array}{c} \rho = 1000 \text{ kg/m}^3 \\ t = 15^\circ C \end{array}$ 36 % 60 62 63 64 65 Η = f(Q)65 64 n=1250 obr/min n=960 obr/min $Q[m^3/h]$ P[kW] $d_z = 400 \text{mm}$ n=1450obr/min n=1250obr/min n=960obr/min $Q[dm^3/s]$

PUMP PERFORMANCE CURVE


- H = f(Q) lift head acc. to rate flow,
- P = f(Q) power input acc. to rate flow,

• $\eta = f(Q)$ - efficiency acc. to rate of flow.

MAIN DIMENSIONS OF PUMP


CONNECTION SIZES OF PUMP

	Dn	i	Dz	do	g	D ₀	D1
Suction connectory	150	8	285	22	26	240	211
Discharge connector	100	8	220	18	22	180	158
	mm	-	mm	mm	mm	mm	mm

The flanges are normally made in accordance with the standard PN-EN 1092-1 or PN-EN 1092-2.

MAIN DIMENSIONS OF PUMP UNIT

Motor type	Celma dSg200L6A	-
Coupling type	V150	-
Weight	1380	kg

It is possible to produce pumps with parameters different than those presented in the tables and on the graphs per agreement with the manufacturer.